skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gaube, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Marine phytoplankton are a diverse group of photoautotrophic organisms and key mediators in the global carbon cycle. Phytoplankton physiology and biomass accumulation are closely tied to mixed layer depth, but the intracellular metabolic pathways activated in response to changes in mixed layer depth remain less explored. Here, metatranscriptomics was used to characterize the phytoplankton community response to a mixed layer shallowing (from 233 to 5 m) over the course of two days during the late spring in the Northwest Atlantic. Most phytoplankton genera downregulated core photosynthesis, carbon storage, and carbon fixation genes as the system transitioned from a deep to a shallow mixed layer and shifted towards catabolism of stored carbon supportive of rapid cell growth. In contrast, phytoplankton genera exhibited divergent transcriptional patterns for photosystem light harvesting complex genes during this transition. Active virus infection, taken as the ratio of virus to host transcripts, increased in the Bacillariophyta (diatom) phylum and decreased in the Chlorophyta (green algae) phylum upon mixed layer shallowing. A conceptual model is proposed to provide ecophysiological context for our findings, in which integrated light limitation and lower division rates during transient deep mixing are hypothesized to disrupt resource-driven, oscillating transcript levels related to photosynthesis, carbon fixation, and carbon storage. Our findings highlight shared and unique transcriptional response strategies within phytoplankton communities acclimating to the dynamic light environment associated with transient deep mixing and shallowing events during the annual North Atlantic bloom. 
    more » « less
  2. Abstract. Phytoplankton form the base of marine food webs and playan important role in carbon cycling, making it important to quantify ratesof biomass accumulation and loss. As phytoplankton drift with oceancurrents, rates should be evaluated in a Lagrangian as opposed to an Eulerianframework. In this study, we quantify the Lagrangian (from Bio-Argo floatsand surface drifters with satellite ocean colour) and Eulerian (fromsatellite ocean colour and altimetry) statistics of mesoscale chlorophylland velocity by computing decorrelation time and length scales and relatethe frames by scaling the material derivative of chlorophyll. Because floatsprofile vertically and are not perfect Lagrangian observers, we quantify themean distance between float and surface geostrophic trajectories over thetime spanned by three consecutive profiles (quasi-planktonic index, QPI) toassess how their sampling is a function of their deviations from surfacemotion. Lagrangian and Eulerian statistics of chlorophyll are sensitive to thefiltering used to compute anomalies. Chlorophyll anomalies about a 31 dtime filter reveal an approximate equivalence of Lagrangian and Euleriantendencies, suggesting they are driven by ocean colour pixel-scale processesand sources or sinks. On the other hand, chlorophyll anomalies about aseasonal cycle have Eulerian scales similar to those of velocity, suggestingmesoscale stirring helps set distributions of biological properties, andratios of Lagrangian to Eulerian timescales depend on the magnitude ofvelocity fluctuations relative to an evolution speed of the chlorophyllfields in a manner similar to earlier theoretical results for velocityscales. The results suggest that stirring by eddies largely sets Lagrangiantime and length scales of chlorophyll anomalies at the mesoscale. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates. Communities in relatively deep, early-spring mixed layers are characterized by low levels of stress and high accumulation rates, while those in the recently shallowed mixed layers in late-spring have high levels of oxidative stress. Prolonged stratification into early autumn manifests in negative accumulation rates, along with pronounced signatures of compromised membranes, death-related protease activity, virus production, nutrient drawdown, and lipid markers indicative of nutrient stress. Positive accumulation renews during mixed layer deepening with transition into winter, concomitant with enhanced nutrient supply and lessened viral pressure. 
    more » « less